

 1

Abstract

Motion parallax is one of the most important 3D clues

for human vision perception. The majority of the 2D
displays today display contents regardless of the user’s
viewpoint. This project implements a system to track an
user’s viewpoint position with respect to a laptop or
desktop display using a Leap motion controller and small
retro-reflective stickers that can be pasted on the user’s
eyewear. 3D renderings can then be projected onto the
display according to the user’s viewpoint to emulate a
hologram effect. The Leap Motion controller and retro-
reflective stickers allow for a considerably cheaper and
vastly more portable system as compared to previous
implementations with the Wii IR remote and the Microsoft
Kinect. Experimentation during this project yielded unique
insights to computer graphics techniques that are optimal
for marker tracking in the stereo fisheye infrared camera
system that the Leap Motion controller provides.

1. Introduction
Human depth perception is primarily based on two visual
cues: binary parallax and monocular movement parallax
[1]. User interfaces that wish to recreate a 3D depth
perception typically fall into two categories. Head
mounted displays such as VR headsets that emulate both
binary and monocular movement parallax [2,3,4]; and 3D
gaming glasses in coordination with switching LCD
screens that emulate binary parallax [5].

In recent years, there have been computer vision projects
that use normal 2D LCD displays and head-tracking
technology to emulate monocular movement parallax
[6,7]. The monocular movement parallax provides the user
with depth perception of any 3D model or environment.
This depth perception can provide greater immersion in
entertainment such as games and 3D movies. The ability
to look around in the 3D environment can also provide
better user experience for CAD tools.

This project implements a system that is cheap (sub $100)
and portable (can be integrated into laptops) that allows
for capturing the 3D position of a user’s viewpoint with
respect to a device’s display. This information can be used
for 3D perspective rendering or other uses.

The work in this project involves both the design of a 3D
position capture system on the Leap Motion controller and
also the exploration of existing computer vision
techniques at subsystems to determine the best techniques
in the unique image capture space that the Leap Motion
controller provides.

2. Overview

2.1. Previous Work

Johnny Lee’s Wii based head tracking and parallax
perspective generation demo [6] proves that monocular
movement parallax can produce dramatic depth perception
using 2D displays. Since Johnny Lee’s project, others have
tried to simplify the head tracking hardware. Microsoft
Kinect based head tracking [7] has shown to work well.

The only portable implementations of parallax projection
based on user viewpoint utilize a webcam and computer
vision algorithms to perform head-tracking [8,9].
However, these systems do not have depth information
and assume that the users viewpoint moves along a 2D
plane at a certain distance from the display. Furthermore,
head rotations in any direction are unaccounted for. This
leads to inaccuracies that affect the perspective projection.

2.2. Contributions

In this project, I used the Leap Motion controller [10] and
retro-reflective stickers that can be pasted on a user’s
eyewear to provide the 3D position of the users viewpoint
with respect to a laptop or desktop display. This viewpoint
information can be used to create perspective projections
of 3D models that give the user an illusion of depth and
also enable the user to explore 3D environments by
moving their head. Since the information captured in this

Eyeglass positional tracking using leap motion controller for parallax projection

Rajarshi Roy

Stanford University
rroy@stanford.edu

 2

system provides the 3D position of each eye, separate
renderings from each eye’s viewpoint can be combined in
viewed via red-blue 3D glasses or shutter based 3D
glasses such as the NVIDIA 3D Vision 2 [5] to provide
complete depth perception at a portable level.

The previous implementations of such a system using the
Wii [6] and the Kinect [7] controllers relied on specialized
depth-capture technologies that these controllers provide
readily. The Leap Motion controller provides images from
stereo IR cameras. Thus, the 3D position capture of the
user’s eyewear was entirely performed through 2D
computer vision techniques. The focus of this project was
to explore various techniques in order to optimize a robust
tracking system for the Leap Motion. As a result, future
projects that use the Leap Motion controller for similar
uses may benefit from the results of this project. A basic
perspective rendering was also implemented as a proof of
concept.

3. Technical Approach

3.1. Summary

The Leap Motion Camera Images API [11] allows access
to the raw camera images from the leap motion controller.
Two 640*240 pixel greyscale images corresponding to the
left and right cameras (Figure 1) captured in the infrared
spectrum are available at a tested framerate of 10 frames
per second.

Figure 1.

In order to obtain the 3D eye position of the user from this
image stream, the following steps were taken:

1) Marker detection: From each of the stereo images, a
reliable marker has to be detected that correspond to the
2D projection from a fixed position on the user’s eyewear

onto each of the Leap Motions’s cameras. There may be
false positives (detection of unrelated features as markers)
and false negatives (inability to detect marker). Various
techniques were evaluated at this subsystem

2) Marker rectification: The Leap Motion API can rectify
the 2D marker position detected from the previous step to
a standardized perspective projection system. The
individual Leap Motion controller has a calibration step
during installation that allows this. The rectification
handles the correction of the fisheye lens effects, and
misalignments of camera. The reason that the rectification
of the entire input image is not performed before the
marker detection step is due to performance and will be
discussed in greater detail later.

3) Marker correspondence: Markers detected from the left
camera image have to be correlated to markers detected
from the right camera image. Again, various techniques
were evaluated at this subsystem. At this stage false
correlations across markers can occur even if the correct
markers were detected.

4) Triangulation: The 2D image plane location of
corresponding marker pairs from the previous step can
now be used to triangulate to the 3D position of the
markers. Properties of the rectified camera system
provided in the Leap Motion documentation in
conjunction with manually measured real-world values are
used in this step.

5) Noise removal: Falsely detected markers are removed
in this step. Undetected markers could be approximated in
this step (not implemented but will be discussed). Also,
since the input images ultimately have low resolutions,
even correctly detected marker positions are prone to
noise. Some techniques to filter this noise will be
discussed.

The output after the last step provides the 3D position and
orientation (multiple markers) of the eyewear (and thus
user’s eyes) with respect to the leap motion controller.
This position can be translated to be with respect to the
display based on real-world measured values of how the
controller is mounted. Finally, a proof-of-concept render
can be implemented to show parallax projection based on
the user’s viewpoint.

3.2. Methodology

Since the objective is to capture the 3D position of the
user’s eyes, its can be seen from Figure 2 that the 3D
position of at least two markers: Maker R and Marker L
are needed. Then the user’s eye positions can be

 3

approximated to lie on the 3D line (Line A) that joins the
two markers. If only one marker was tracked, any rotation
about marker would cause the eye positions to be
ambiguous. Another possible design of the system that
was not pursued is three or more coplanar markers. That
would allow flexibility to place the markers outside the
virtual line connecting the user’s eyes.

Figure 2.

Looking at Figure 1, we can see that there are no base
distinctive features in the IR spectrum that can be tracked
as markers. Thus, an artificial marker was needed for
tracking.

After experimentation with different materials, 3MTM
ScotchliteTM retro-reflective tape produced the brightest
markers which were the most consistent at different
angles. Figure 3 shows raw camera images of user with
eyewear that has the retroreflective markers.

Figure 3.

The markers were 7mm circles punched out from the
retro-reflective tape and stuck on the eyewear as shown in
Figure 4.

Figure 4.

The Leap Motion controller was mounted in front of the
webcam of the user’s MacBook Air laptop as shown in
Figure 5.

Figure 5.

With a reliable marker and a standardized experimental
setup, the steps outlined in the summary were
experimented upon. The following sections will describe
techniques tried in each subsystem along with benchmark
results and analysis. Section 4: Experimental Results will
thus be a summary of the experimentation described in the
following sections.

Since this project was a single person project with little
background work in the Leap Motion infrastructure to
refer from, rapid experimentation, prototyping and visual
feedback was required. Thus the Java based Processing
IDE [15] was chosen as the infrastructure of choice. The
Processing IDE allows for quick real-time visualization
and rendering. The OpenCV Java bindings [16] were
imported in Processing and a wrapper library for the Leap
Motion Java bindings [17] was used.

3.2.1 Benchmarking
The ideal benchmarking for all of the subsystems would
be a benchmark that compares the actual position of the
3D markers with the captured position of the 3D markers.
However, a method to calculate the actual position of the

 4

3D markers would need accelerometers and thus was not
possible. As a result, two benchmarking methods were
used. The first method was qualitative visual feedback
where a basic 3D model of the setup and marker positions
was rendered as spheres. The second benchmarking
method, which was crucial in comparing and optimizing
techniques, was the “fraction of time real-world
constraints met” or the “FTRWCM score”. This is a loose
benchmark, which is not based on any existing
benchmarks.
To calculate the FTRWCM score, the user moves around
in front of the experimental setup with the eyewear on for
a minute. The score is the fraction of time that the
following constraints are met after all the calculation
steps:
1) The 3D position of both a left and a right marker is
produced
2) Left marker is to the left (smaller x coordinate) than
right marker
3) Both left and right markers are within a bounding
volume (within 2ft on each side, within 2ft on top and
bottom, and within 3ft depth from the leap motion
controller)
4) The measured distance between the 3D position of left
and right marker are within 5% of actual distance between
left and right markers.

3.2.2 Marker Detection
The first method that was attempted for marker detection
was image thresholding and contour detection. Since the
marker color as seen in Figure 3 is close to white, the idea
was to apply a threshold on the image so that pixels with
intensity values above the threshold become white and all
other pixel become black. The
org.opencv.imgproc.Imgproc.threshold() function was
used for this. The next step was to use the
org.opencv.imgproc.Imgproc.findContours() function to
get a list of all the blobs of white pixels. Finally, a
constraint on the maximum area of blobs was used to filter
out large sections of white pixels. This method did not
work well (Table 4.1) for a range of thresholds tried. At
high thresholds, the marker would not be detected if its
brightness value fell below a certain level. At lower
thresholds, the marker would merge with other blobs of
above-threshold pixels.

The second method was to use Hough voting to detect
circles in the image since the markers were circular. The
org.opencv.imgproc.Imgproc.HoughCircles() function
with the CV.HOUGH_GRADIENT vote was used to
detect the marker in the image. This method worked better
than the thresholding and contour detection (Table 4.1)
method. However, the performance was not robust since
the markers were not detected when the projected shape of

the marker became ellipsoid due to the angle of the
eyewear of the severe fisheye distortion in the image.

The third method evaluated was the OpenCV
FeatureDetector.SIMPLEBLOB detector. This detector is
essentially a sophisticated version of the
threshold+contour method. The default SIMPLEBLOB
detector parameters threshold the image at 10 levels
instead of a single threshold. After finding contours it also
conducts modes by area, circularity, inertia (eccentricity)
and convexity of blobs in order to detect simple circular
dark blobs. The raw image was thus inverted and the
default SIMPLEBLOB detector was applied. The results
can be seen in Figure 6 where yellow dots show detected
markers. Even though there were many false positives, the
actual markers were always tracked. This led to better
results (Table 4.1).

Figure 6.

Finally, the default parameters of the SIMPLEBLOB
detector (See Appendix A) were tuned (See Appendix B)
to reduce false positives. The results can be seen in Figure
7.

Figure 7.

This method had the highest FTRWCM score among all
the marker detector methods and was used in the final
implementation.

 5

3.2.3 Marker Rectification

Since the Leap Motion controller cameras have high
fisheye distortion since they high field-of-view lenses.
Furthermore, the cameras may be slightly misaligned. As a
result, it is not possible to triangulate 3D position directly
from the 2D marker positions detected in the raw images.
Fortunately, after calibrating the Leap Motion controller
with provided software, the
com.leapmotion.leap.Image.rectify() function in the Leap
Motion API can be used to rectify the 2D marker positions
in the left and right image.

The rectification can be verified from Figure 8, which
shows that the rectified marker positions follow the
epipolar constraint of having the same vertical coordinate.

Figure 8. Bottom left corner show rectangles around
corresponding markers yielding to epipolar constraint

One alternate method could have been to rectify the entire
raw images before marker detection. This method was
slow and took more than a second to process one frame.
Thus this method was not used.

3.2.4 Marker Correspondence
Before triangulation can be performed, rectified markers
from the left and right camera images have to be
correlated into pairs. Several methods were evaluated to
perform marker correspondence.

The first method that was attempted was to simply declare
the pair of leftmost marker (smallest x coordinate) in each
of the camera image to be correlated to the left marker.
The rightmost marker (largest x coordinate) in each image
was similarly correlated to the right marker. This method
did not perform well (Table 4.1) under the presence of
infrared sources such as incandescent bulbs. This method
worked better in complete darkness (Table 4.1) but not
perfectly, as false positive markers from previous steps
would break the logic.

The second method attempted was to use SURF
descriptors at markers to correlate them. The SURF type
OpenCV DescriptorExtractor
(org.opencv.features2d.DescriptorExtractor) was used to
extract SURF feature vectors at from the left and right raw
images at the marker positions. Then the FLANNBASED
OpenCV DescriptorMatcher was used to correlate the
markers with the closest matching SURF feature vectors.
Even though this method can be very effective in
correlating images captured in the visible light spectrum
[18], the method did not work well in the infrared images.
This could be due to the lack of textures around markers in
infrared spectrum. The correlations were inaccurate
(Figure 9) and the performance was not low (Table 4.1).

Figure 9.

The third method used SIFT features instead of SURF
features to correlate markers. This method worked
marginally better (Table 4.1) and still had similar issues to
the SURF based method as seen in Figure 10.

Figure 10.

The final correlation method evaluated was epipolar
constrain based. Since from Figure 8 it was observed that
corresponding markers follow the epipolar constrain of
horizontally rectified images, which is that their vertical
coordinates will be the same. Thus the correlation method
used was that

=====================================
for (rectified marker l in left image)
 for(rectified marker r in right image)
 if r falls in constrain rectangle of l, consider (l,r)
 as a pair
=====================================

 6

The constrain rectangle is defined by the conditions:
1) (l.x-r.x)<0
2) (r.x-l.x)<0.2
3) (l.y-r.y)<0.025
4) (r.y-l.y)<0.025
Conditions 3 and 4 come from epipolar constraints.
Condition 1 comes from the marker in left image needing
to be to the left to the marker in the right image. Condition
2 limits the rectangle size by experimental data: marker
projections are not further apart than 0.2 when the maker
is very close to the leap motion controller.

Note that this method can correlate the projection of
different markers together if they fall in the constraint
triangle. These false positives are filtered out in later steps.
This method works very well as opposed to the other
methods evaluated (Table 4.1).

3.2.5 Triangulation

The triangulation equation for the markers are obtained
from the Leap Motion documentation [12].
 float z = 40/(rightPoint.x - leftPoint.x);
 float y = z * (rightPoint.y+leftPoint.y) / 2;
 float x = 20 - z * (rightPoint.x+leftPoint.x) / 2;

Any triangulated marker must be within a bounding
volume (within 2ft on each side, within 2ft on top and
bottom, and within 3ft depth from the leap motion
controller) or else it will be filtered out. This removes
most incorrectly correlated markers.

3.2.6 Noise Removal

Finally, if more than two markers remain after the
triangulation step, the two markers that fit the measured
distance between the 3D position of left and right marker
within 5% of actual distance between left and right
markers are chosen.

A moving average of three datapoints was used for
smoothing the data since the Java bindings of the current
version of openCV KalmanFilter does not allow for
transition matrix editing.

3.2.7 Perspective Projection
A proof of concept perspective projection based on the
equations in the generalized perspective projection paper
[13] was implemented.

4. Experimental Results
The following table summarizes the “FTRWCM score” of
all the combination of methods attempted.

Detection
Method

Correspondence
Method

Environment FTRWCM
score

Threshold+
Contours

Epipolar based No other IR
source

0.158

Hough
Circles

Epipolar based No other IR
source

0.373

SimpleBlob
Default
Params

Epipolar based No other IR
source

0.662

SimpleBlob
Custom
Params

Leftmost and
Rightmost

No other IR
source

0.787

SimpleBlob
Custom
Params

Leftmost and
Rightmost

With other IR
source

0.051

SimpleBlob
Custom
Params

SURF based With other IR
source

0.254

SimpleBlob
Custom
Params

SIFT based With other IR
source

0.319

SimpleBlob
Custom
Params

Epipolar based With other IR
source

0.964

Table 4.1: “FTRWCM score” of various methods
evaluated.

The final configuration of methods was to use the
SIMPLEBLOB FeatureDetector with custom-tuned
parameters, epipolar constraints for correlation, real-world
distance constraint between markers for filtering out false
positives. This combination had a “FTRWCM score” of
0.964.

5. Conclusions
In this project the Leap Motion controller and retro-
reflective stickers were used to create a cheap and portable
realtime 3D eye position-tracking system. Various
methods were evaluated to obtain the optimal technique to
implement this system in the Leap Motion environment.
The final system tracks the eye position of a user with
96.4% robustness under the presence of other infrared
radiation sources.

The code for the tracking system is at:
https://github.com/rajarshiroy/CS231A_PROJECT/tree/m
aster/FinalReportCode/MarkerTracking
A corresponding video demo is at:
https://www.youtube.com/user/roy112358 titled “CS231A
MarkerTracking”.

 7

A proof-of-concept perspective rendering using tracking
data was also implemented. The code for the system is at:
https://github.com/rajarshiroy/CS231A_PROJECT/tree/m
aster/FinalReportCode/PerspectiveRender
A corresponding video demo is at:
https://www.youtube.com/user/roy112358 titled “CS231A
PerspectiveRender”.

In the future, a more extensive rendering system can be
developed. Also, the tracking accuracy can be further
improved using Extended Kalman Filtering and Optical
Flow based prediction. The framerate of the system is 10
frames per second on a Macbook Air. This could by
improved via multithreading the image acquisition and
tracking.

6. References
[1] Depth Cues in the Human Visual System. Marko
Teittinen.
<http://www.hitl.washington.edu/projects/knowledge_bas
e/virtual-worlds/EVE/III.A.1.c.DepthCues.html>
[2] Google Cardboard.
<https://www.google.com/get/cardboard/>
[3] Oculus Rift. <https://www.oculus.com/en-us/>
[4] HTC Vive. <https://www.htcvive.com/us/>
[5] 3D Vision 2 Wireless Glasses.
<http://www.nvidia.com/object/product-geforce-3d-
vision2-wireless-glasses-us.html>
[6] Head Tracking for Desktop VR Displays using the Wii
Remote. Johnny Lee. <http://johnnylee.net/projects/wii/>
[7] 3D Display Simulation using Head-Tracking with
Kinect. Manfred Zabarauskas.
http://blog.manfredas.com/3d-display-simulation-using-
head-tracking-with-microsoft-kinect/
[8] Head Tracking Motion Parallax.
<http://blog.onthewings.net/2012/03/04/head-tracking-
motion-parallax-3d-in-haxe-flash/>
[9] Improving 3D perception by adding eye-tracking based
motion parallax.
<http://research.microsoft.com/pubs/147007/Mono3Ddem
oICASSP09b.pdf>
[10] Leap Motion Controller.
<http://blog.leapmotion.com/hardware-to-software-how-
does-the-leap-motion-controller-work/>
[11] OpenCV Blob detection library.
<http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleB
lobDetector.html#gsc.tab=0>
[12] Image API Basics. Leap Motion developer
documentation.
<https://developer.leapmotion.com/documentation/csharp/
devguide/Leap_Images.html>
[13] Generalized Perspective Projection. Robert Kooima.
<http://csc.lsu.edu/~kooima/pdfs/gen-perspective.pdf>

[14] 3M™ Scotchlite™ Reflective Material.
<http://solutions.3m.com/wps/portal/3M/en_US/Scotchlite
NA/Scotchlite/>
[15] Processing IDE.
<https://processing.org/reference/environment/>
[16] OpenCV Java Bindings.
<http://docs.opencv.org/java/2.4.9/>
[17] Leap Motion Wrapper Library.
<https://github.com/nok/leap-motion-processing>
[18] Feature Matching with FLANN.
<http://docs.opencv.org/2.4/doc/tutorials/features2d/featur
e_flann_matcher/feature_flann_matcher.html>

 8

6. Appendix

Appendix A: OpenCV SIMPLEBLOB Default
Parameters:

%YAML:1.0
thresholdStep: 10.
minThreshold: 50.
maxThreshold: 220.
minRepeatability: 2
minDistBetweenBlobs: 10.
filterByColor: 1
blobColor: 0
filterByArea: 1
minArea: 25.
maxArea: 5000.
filterByCircularity: 0
minCircularity: 8.0000001192092896e-01
maxCircularity: 3.4028234663852886e+38
filterByInertia: 1
minInertiaRatio: 1.0000000149011612e-01
maxInertiaRatio: 3.4028234663852886e+38
filterByConvexity: 1
minConvexity: 9.4999998807907104e-01
maxConvexity: 3.4028234663852886e+38

Appendix B: OpenCV SIMPLEBLOB Custom
Parameters:
%YAML:1.0
thresholdStep: 5.
minThreshold: 55.
maxThreshold: 255.
minRepeatability: 2
minDistBetweenBlobs: 10.
filterByColor: 1
blobColor: 255
filterByArea: 1
minArea: 5.
maxArea: 20.
filterByCircularity: 0
minCircularity: 8.0000001192092896e-01
maxCircularity: 3.4028234663852886e+38
filterByInertia: 1
minInertiaRatio: 1.0000000149011612e-01
maxInertiaRatio: 3.4028234663852886e+38
filterByConvexity: 1
minConvexity: 9.4999998807907104e-01
maxConvexity: 3.4028234663852886e+38

