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Abstract 

 
Motion parallax is one of the most important 3D clues 

for human vision perception. The majority of the 2D 
displays today display contents regardless of the user’s 
viewpoint. This project implements a system to track an 
user’s viewpoint position with respect to a laptop or 
desktop display using a Leap motion controller and small 
retro-reflective stickers that can be pasted on the user’s 
eyewear. 3D renderings can then be projected onto the 
display according to the user’s viewpoint to emulate a 
hologram effect. The Leap Motion controller and retro-
reflective stickers allow for a considerably cheaper and 
vastly more portable system as compared to previous 
implementations with the Wii IR remote and the Microsoft 
Kinect. Experimentation during this project yielded unique 
insights to computer graphics techniques that are optimal 
for marker tracking in the stereo fisheye infrared camera 
system that the Leap Motion controller provides. 
 

1. Introduction 
Human depth perception is primarily based on two visual 
cues: binary parallax and monocular movement parallax 
[1]. User interfaces that wish to recreate a 3D depth 
perception typically fall into two categories. Head 
mounted displays such as VR headsets that emulate both 
binary and monocular movement parallax [2,3,4]; and 3D 
gaming glasses in coordination with switching LCD 
screens that emulate binary parallax [5]. 
 
In recent years, there have been computer vision projects 
that use normal 2D LCD displays and head-tracking 
technology to emulate monocular movement parallax 
[6,7]. The monocular movement parallax provides the user 
with depth perception of any 3D model or environment. 
This depth perception can provide greater immersion in 
entertainment such as games and 3D movies. The ability 
to look around in the 3D environment can also provide 
better user experience for CAD tools. 
 

This project implements a system that is cheap (sub $100) 
and portable (can be integrated into laptops) that allows 
for capturing the 3D position of a user’s viewpoint with 
respect to a device’s display. This information can be used 
for 3D perspective rendering or other uses. 
 
The work in this project involves both the design of a 3D 
position capture system on the Leap Motion controller and 
also the exploration of existing computer vision 
techniques at subsystems to determine the best techniques 
in the unique image capture space that the Leap Motion 
controller provides. 

2. Overview 

2.1. Previous Work 

Johnny Lee’s Wii based head tracking and parallax 
perspective generation demo [6] proves that monocular 
movement parallax can produce dramatic depth perception 
using 2D displays. Since Johnny Lee’s project, others have 
tried to simplify the head tracking hardware. Microsoft 
Kinect based head tracking [7] has shown to work well.  
 
The only portable implementations of parallax projection 
based on user viewpoint utilize a webcam and computer 
vision algorithms to perform head-tracking [8,9]. 
However, these systems do not have depth information 
and assume that the users viewpoint moves along a 2D 
plane at a certain distance from the display. Furthermore, 
head rotations in any direction are unaccounted for. This 
leads to inaccuracies that affect the perspective projection. 
 

2.2. Contributions 

In this project, I used the Leap Motion controller [10] and 
retro-reflective stickers that can be pasted on a user’s 
eyewear to provide the 3D position of the users viewpoint 
with respect to a laptop or desktop display. This viewpoint 
information can be used to create perspective projections 
of 3D models that give the user an illusion of depth and 
also enable the user to explore 3D environments by 
moving their head. Since the information captured in this 
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system provides the 3D position of each eye, separate 
renderings from each eye’s viewpoint can be combined in 
viewed via red-blue 3D glasses or shutter based 3D 
glasses such as the NVIDIA 3D Vision 2 [5] to provide 
complete depth perception at a portable level. 
 
The previous implementations of such a system using the 
Wii [6] and the Kinect [7] controllers relied on specialized 
depth-capture technologies that these controllers provide 
readily. The Leap Motion controller provides images from 
stereo IR cameras. Thus, the 3D position capture of the 
user’s eyewear was entirely performed through 2D 
computer vision techniques. The focus of this project was 
to explore various techniques in order to optimize a robust 
tracking system for the Leap Motion. As a result, future 
projects that use the Leap Motion controller for similar 
uses may benefit from the results of this project. A basic 
perspective rendering was also implemented as a proof of 
concept. 
 

3. Technical Approach 

3.1. Summary 

The Leap Motion Camera Images API [11] allows access 
to the raw camera images from the leap motion controller. 
Two 640*240 pixel greyscale images corresponding to the 
left and right cameras (Figure 1) captured in the infrared 
spectrum are available at a tested framerate of 10 frames 
per second. 

 
 
Figure 1. 
 
In order to obtain the 3D eye position of the user from this 
image stream, the following steps were taken: 
 
1) Marker detection: From each of the stereo images, a 
reliable marker has to be detected that correspond to the 
2D projection from a fixed position on the user’s eyewear 

onto each of the Leap Motions’s cameras. There may be 
false positives (detection of unrelated features as markers) 
and false negatives (inability to detect marker). Various 
techniques were evaluated at this subsystem 
 
2) Marker rectification: The Leap Motion API can rectify 
the 2D marker position detected from the previous step to 
a standardized perspective projection system. The 
individual Leap Motion controller has a calibration step 
during installation that allows this. The rectification 
handles the correction of the fisheye lens effects, and 
misalignments of camera. The reason that the rectification 
of the entire input image is not performed before the 
marker detection step is due to performance and will be 
discussed in greater detail later. 
 
3) Marker correspondence: Markers detected from the left 
camera image have to be correlated to markers detected 
from the right camera image. Again, various techniques 
were evaluated at this subsystem. At this stage false 
correlations across markers can occur even if the correct 
markers were detected. 
 
4) Triangulation: The 2D image plane location of 
corresponding marker pairs from the previous step can 
now be used to triangulate to the 3D position of the 
markers. Properties of the rectified camera system 
provided in the Leap Motion documentation in 
conjunction with manually measured real-world values are 
used in this step. 
 
5) Noise removal: Falsely detected markers are removed 
in this step. Undetected markers could be approximated in 
this step (not implemented but will be discussed). Also, 
since the input images ultimately have low resolutions, 
even correctly detected marker positions are prone to 
noise. Some techniques to filter this noise will be 
discussed. 
 
The output after the last step provides the 3D position and 
orientation (multiple markers) of the eyewear (and thus 
user’s eyes) with respect to the leap motion controller. 
This position can be translated to be with respect to the 
display based on real-world measured values of how the 
controller is mounted. Finally, a proof-of-concept render 
can be implemented to show parallax projection based on 
the user’s viewpoint. 
 

3.2. Methodology 

Since the objective is to capture the 3D position of the 
user’s eyes, its can be seen from Figure 2 that the 3D 
position of at least two markers: Maker R and Marker L 
are needed. Then the user’s eye positions can be 
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approximated to lie on the 3D line (Line A) that joins the 
two markers. If only one marker was tracked, any rotation 
about marker would cause the eye positions to be 
ambiguous. Another possible design of the system that 
was not pursued is three or more coplanar markers. That 
would allow flexibility to place the markers outside the 
virtual line connecting the user’s eyes.   
 

 
Figure 2. 
 
Looking at Figure 1, we can see that there are no base 
distinctive features in the IR spectrum that can be tracked 
as markers. Thus, an artificial marker was needed for 
tracking. 
 
After experimentation with different materials, 3MTM 
ScotchliteTM retro-reflective tape produced the brightest 
markers which were the most consistent at different 
angles. Figure 3 shows raw camera images of user with 
eyewear that has the retroreflective markers. 
 

 
Figure 3. 
 
The markers were 7mm circles punched out from the 
retro-reflective tape and stuck on the eyewear as shown in 
Figure 4. 
 

 
Figure 4. 
 
The Leap Motion controller was mounted in front of the 
webcam of the user’s MacBook Air laptop as shown in 
Figure 5. 
 

Figure 5. 
 
With a reliable marker and a standardized experimental 
setup, the steps outlined in the summary were 
experimented upon. The following sections will describe 
techniques tried in each subsystem along with benchmark 
results and analysis. Section 4: Experimental Results will 
thus be a summary of the experimentation described in the 
following sections. 
 
Since this project was a single person project with little 
background work in the Leap Motion infrastructure to 
refer from, rapid experimentation, prototyping and visual 
feedback was required. Thus the Java based Processing 
IDE [15] was chosen as the infrastructure of choice. The 
Processing IDE allows for quick real-time visualization 
and rendering. The OpenCV Java bindings [16] were 
imported in Processing and a wrapper library for the Leap 
Motion Java bindings [17] was used. 
 
 
3.2.1 Benchmarking 
The ideal benchmarking for all of the subsystems would 
be a benchmark that compares the actual position of the 
3D markers with the captured position of the 3D markers. 
However, a method to calculate the actual position of the 
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3D markers would need accelerometers and thus was not 
possible. As a result, two benchmarking methods were 
used. The first method was qualitative visual feedback 
where a basic 3D model of the setup and marker positions 
was rendered as spheres. The second benchmarking 
method, which was crucial in comparing and optimizing 
techniques, was the “fraction of time real-world 
constraints met” or the “FTRWCM score”. This is a loose 
benchmark, which is not based on any existing 
benchmarks.  
To calculate the FTRWCM score, the user moves around 
in front of the experimental setup with the eyewear on for 
a minute. The score is the fraction of time that the 
following constraints are met after all the calculation 
steps: 
1) The 3D position of both a left and a right marker is 
produced 
2) Left marker is to the left (smaller x coordinate) than 
right marker 
3) Both left and right markers are within a bounding 
volume (within 2ft on each side, within 2ft on top and 
bottom, and within 3ft depth from the leap motion 
controller) 
4) The measured distance between the 3D position of left 
and right marker are within 5% of actual distance between 
left and right markers. 
 
 
3.2.2 Marker Detection 
The first method that was attempted for marker detection 
was image thresholding and contour detection. Since the 
marker color as seen in Figure 3 is close to white, the idea 
was to apply a threshold on the image so that pixels with 
intensity values above the threshold become white and all 
other pixel become black. The 
org.opencv.imgproc.Imgproc.threshold() function was 
used for this. The next step was to use the 
org.opencv.imgproc.Imgproc.findContours() function to 
get a list of all the blobs of white pixels. Finally, a 
constraint on the maximum area of blobs was used to filter 
out large sections of white pixels. This method did not 
work well (Table 4.1) for a range of thresholds tried. At 
high thresholds, the marker would not be detected if its 
brightness value fell below a certain level. At lower 
thresholds, the marker would merge with other blobs of 
above-threshold pixels. 
 
The second method was to use Hough voting to detect 
circles in the image since the markers were circular. The 
org.opencv.imgproc.Imgproc.HoughCircles() function 
with the CV.HOUGH_GRADIENT vote was used to 
detect the marker in the image. This method worked better 
than the thresholding and contour detection (Table 4.1) 
method. However, the performance was not robust since 
the markers were not detected when the projected shape of 

the marker became ellipsoid due to the angle of the 
eyewear of the severe fisheye distortion in the image. 
 
The third method evaluated was the OpenCV 
FeatureDetector.SIMPLEBLOB detector. This detector is 
essentially a sophisticated version of the 
threshold+contour method. The default SIMPLEBLOB 
detector parameters threshold the image at 10 levels 
instead of a single threshold. After finding contours it also 
conducts modes by area, circularity, inertia (eccentricity) 
and convexity of blobs in order to detect simple circular 
dark blobs. The raw image was thus inverted and the 
default SIMPLEBLOB detector was applied. The results 
can be seen in Figure 6 where yellow dots show detected 
markers. Even though there were many false positives, the 
actual markers were always tracked. This led to better 
results (Table 4.1). 
 

 
Figure 6. 
 
Finally, the default parameters of the SIMPLEBLOB 
detector (See Appendix A) were tuned (See Appendix B) 
to reduce false positives. The results can be seen in Figure 
7.  
 

 
Figure 7. 
 
This method had the highest FTRWCM score among all 
the marker detector methods and was used in the final 
implementation. 
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3.2.3 Marker Rectification 
 
Since the Leap Motion controller cameras have high 
fisheye distortion since they high field-of-view lenses. 
Furthermore, the cameras may be slightly misaligned. As a 
result, it is not possible to triangulate 3D position directly 
from the 2D marker positions detected in the raw images. 
Fortunately, after calibrating the Leap Motion controller 
with provided software, the 
com.leapmotion.leap.Image.rectify() function in the Leap 
Motion API can be used to rectify the 2D marker positions 
in the left and right image. 
 
The rectification can be verified from Figure 8, which 
shows that the rectified marker positions follow the 
epipolar constraint of having the same vertical coordinate. 
 

 
Figure 8. Bottom left corner show rectangles around 
corresponding markers yielding to epipolar constraint 
 
One alternate method could have been to rectify the entire 
raw images before marker detection. This method was 
slow and took more than a second to process one frame. 
Thus this method was not used. 
 
3.2.4 Marker Correspondence 
Before triangulation can be performed, rectified markers 
from the left and right camera images have to be 
correlated into pairs. Several methods were evaluated to 
perform marker correspondence. 
 
The first method that was attempted was to simply declare 
the pair of leftmost marker (smallest x coordinate) in each 
of the camera image to be correlated to the left marker. 
The rightmost marker (largest x coordinate) in each image 
was similarly correlated to the right marker. This method 
did not perform well (Table 4.1) under the presence of 
infrared sources such as incandescent bulbs. This method 
worked better in complete darkness (Table 4.1) but not 
perfectly, as false positive markers from previous steps 
would break the logic. 

 
The second method attempted was to use SURF 
descriptors at markers to correlate them. The SURF type 
OpenCV DescriptorExtractor 
(org.opencv.features2d.DescriptorExtractor) was used to 
extract SURF feature vectors at from the left and right raw 
images at the marker positions. Then the FLANNBASED 
OpenCV DescriptorMatcher was used to correlate the 
markers with the closest matching SURF feature vectors. 
Even though this method can be very effective in 
correlating images captured in the visible light spectrum 
[18], the method did not work well in the infrared images. 
This could be due to the lack of textures around markers in 
infrared spectrum. The correlations were inaccurate 
(Figure 9) and the performance was not low (Table 4.1). 
 

 
Figure 9. 
 
The third method used SIFT features instead of SURF 
features to correlate markers. This method worked 
marginally better (Table 4.1) and still had similar issues to 
the SURF based method as seen in Figure 10. 
 

 
Figure 10. 
 
The final correlation method evaluated was epipolar 
constrain based. Since from Figure 8 it was observed that 
corresponding markers follow the epipolar constrain of 
horizontally rectified images, which is that their vertical 
coordinates will be the same. Thus the correlation method 
used was that 
 
===================================== 
for (rectified marker l in left image) 
   for(rectified marker r in right image) 
     if r falls in constrain rectangle of l, consider (l,r)  
     as a  pair 
===================================== 
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The constrain rectangle is defined by the conditions: 
1) (l.x-r.x)<0 
2) (r.x-l.x)<0.2 
3) (l.y-r.y)<0.025 
4) (r.y-l.y)<0.025 
Conditions 3 and 4 come from epipolar constraints. 
Condition 1 comes from the marker in left image needing 
to be to the left to the marker in the right image. Condition 
2 limits the rectangle size by experimental data: marker 
projections are not further apart than 0.2 when the maker 
is very close to the leap motion controller. 
 
Note that this method can correlate the projection of 
different markers together if they fall in the constraint 
triangle. These false positives are filtered out in later steps. 
This method works very well as opposed to the other 
methods evaluated (Table 4.1). 
 
3.2.5 Triangulation 
 
The triangulation equation for the markers are obtained 
from the Leap Motion documentation [12].  
     float z = 40/(rightPoint.x - leftPoint.x); 
     float y = z * (rightPoint.y+leftPoint.y) / 2; 
     float x = 20 - z * (rightPoint.x+leftPoint.x) / 2; 
 
Any triangulated marker must be within a bounding 
volume (within 2ft on each side, within 2ft on top and 
bottom, and within 3ft depth from the leap motion 
controller) or else it will be filtered out. This removes 
most incorrectly correlated markers. 
 
3.2.6 Noise Removal 
 
Finally, if more than two markers remain after the 
triangulation step, the two markers that fit the measured 
distance between the 3D position of left and right marker 
within 5% of actual distance between left and right 
markers are chosen. 
 
A moving average of three datapoints was used for 
smoothing the data since the Java bindings of the current 
version of openCV KalmanFilter does not allow for 
transition matrix editing. 
 
3.2.7 Perspective Projection 
A proof of concept perspective projection based on the 
equations in the generalized perspective projection paper 
[13] was implemented. 

4. Experimental Results 
The following table summarizes the “FTRWCM score” of 
all the combination of methods attempted. 
 
 

 
Detection 
Method 

Correspondence 
Method 

Environment FTRWCM 
score 

Threshold+ 
Contours 

Epipolar based No other IR 
source 

0.158 

Hough 
Circles 

Epipolar based No other IR 
source 

0.373 

SimpleBlob 
Default 
Params 

Epipolar based No other IR 
source 

0.662 

SimpleBlob 
Custom 
Params 

Leftmost and 
Rightmost 

No other IR 
source 

0.787 

SimpleBlob 
Custom 
Params 

Leftmost and 
Rightmost 

With other IR 
source 

0.051 

SimpleBlob 
Custom 
Params 

SURF based With other IR 
source 

0.254 

SimpleBlob 
Custom 
Params 

SIFT based With other IR 
source 

0.319 

SimpleBlob 
Custom 
Params 

Epipolar based With other IR 
source 

0.964 

 
Table 4.1: “FTRWCM score” of various methods 
evaluated. 
 
The final configuration of methods was to use the 
SIMPLEBLOB FeatureDetector with custom-tuned 
parameters, epipolar constraints for correlation, real-world 
distance constraint between markers for filtering out false 
positives. This combination had a “FTRWCM score” of 
0.964.  
 

5. Conclusions 
In this project the Leap Motion controller and retro-
reflective stickers were used to create a cheap and portable 
realtime 3D eye position-tracking system. Various 
methods were evaluated to obtain the optimal technique to 
implement this system in the Leap Motion environment. 
The final system tracks the eye position of a user with 
96.4% robustness under the presence of other infrared 
radiation sources.  
 
The code for the tracking system is at: 
https://github.com/rajarshiroy/CS231A_PROJECT/tree/m
aster/FinalReportCode/MarkerTracking 
A corresponding video demo is at: 
https://www.youtube.com/user/roy112358 titled “CS231A 
MarkerTracking”. 
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A proof-of-concept perspective rendering using tracking 
data was also implemented. The code for the system is at: 
https://github.com/rajarshiroy/CS231A_PROJECT/tree/m
aster/FinalReportCode/PerspectiveRender 
A corresponding video demo is at: 
https://www.youtube.com/user/roy112358 titled “CS231A 
PerspectiveRender”. 
 
In the future, a more extensive rendering system can be 
developed. Also, the tracking accuracy can be further 
improved using Extended Kalman Filtering and Optical 
Flow based prediction. The framerate of the system is 10 
frames per second on a Macbook Air. This could by 
improved via multithreading the image acquisition and 
tracking. 
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6. Appendix 
 
Appendix A: OpenCV SIMPLEBLOB Default 
Parameters: 
 
%YAML:1.0 
thresholdStep: 10. 
minThreshold: 50. 
maxThreshold: 220. 
minRepeatability: 2 
minDistBetweenBlobs: 10. 
filterByColor: 1 
blobColor: 0 
filterByArea: 1 
minArea: 25. 
maxArea: 5000. 
filterByCircularity: 0 
minCircularity: 8.0000001192092896e-01 
maxCircularity: 3.4028234663852886e+38 
filterByInertia: 1 
minInertiaRatio: 1.0000000149011612e-01 
maxInertiaRatio: 3.4028234663852886e+38 
filterByConvexity: 1 
minConvexity: 9.4999998807907104e-01 
maxConvexity: 3.4028234663852886e+38 
 
 
Appendix B: OpenCV SIMPLEBLOB Custom 
Parameters: 
%YAML:1.0 
thresholdStep: 5. 
minThreshold: 55. 
maxThreshold: 255. 
minRepeatability: 2 
minDistBetweenBlobs: 10. 
filterByColor: 1 
blobColor: 255 
filterByArea: 1 
minArea: 5. 
maxArea: 20. 
filterByCircularity: 0 
minCircularity: 8.0000001192092896e-01 
maxCircularity: 3.4028234663852886e+38 
filterByInertia: 1 
minInertiaRatio: 1.0000000149011612e-01 
maxInertiaRatio: 3.4028234663852886e+38 
filterByConvexity: 1 
minConvexity: 9.4999998807907104e-01 
maxConvexity: 3.4028234663852886e+38 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


